

Hard Chrome Alternatives Team 20-21 July, 2004, Utah

Elimination of Chromium
Electrodeposition
from
Large Caliber Launch Systems

Name of Briefer: Krystyna Truszkowska US Army Benet Laboratories

part of the US Army Armaments Research, Development and Engineering Center

maintaining the data needed, and c including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar	o average 1 hour per response, includion of information. Send comments a arters Services, Directorate for Informy other provision of law, no person a	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington			
1. REPORT DATE JUL 2004		2. REPORT TYPE		3. DATES COVE 00-00-2004	red to 00-00-2004			
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER				
Elimination of Chromium Electrodeposition from Large Caliber Launch					5b. GRANT NUMBER			
Systems				5c. PROGRAM ELEMENT NUMBER				
6. AUTHOR(S)			5d. PROJECT NUMBER					
		5e. TASK NUMBER						
			5f. WORK UNIT NUMBER					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Army Benet Laboratories, Picatinny Arsenal, NJ, 07806 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER								
9. SPONSORING/MONITO	RING AGENCY NAME(S) A		10. SPONSOR/MONITOR'S ACRONYM(S)					
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT			
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited						
13. SUPPLEMENTARY NO 24th Replacement Sponsored by SER	of Hard Chrome Pla	ating Program Revi	ew Meeting, July	20-21, 2004,	Park City, UT.			
14. ABSTRACT								
15. SUBJECT TERMS								
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF					
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 20	RESPONSIBLE PERSON			

Report Documentation Page

Form Approved OMB No. 0704-0188

LARGE CALIBER GUN EROSION

ARDEC

Direct Fire

120mm GUN BARREL **DEGRADATION**

ARDEC

Classic Erosion Defined

Condemned ABRAMS 120mm GUN BARREL

(214 rounds): > 5mm erosion

- HC Chrome is produced in an "as cracked" condition offering path to substrate
- HC Cr contaminants off-gas causing further material volume shrinkage and stress-relief cracking
- Combustion products:
 - Penetrate cracks
 - Alter steel substrate phase
 - Convert substrate surface to carbides & oxides
 - Lowers MP of substrate surface
- · Gas wash:
 - Removes lower MP substrate surface
 - Erodes Cr foundation (compromised adherence)
- Departing Cr exposes more substrate to high velocity gas wash and further erosion

120mm GUN BARREL MANUFACTURING PROCESS

LARGE CALIBER GUN COATING REQUIREMENTS

Material & Deposition Process Requirements

MATERIAL CHARACTERISTIC

Melting Point Cr (1875 C) or better

Elastic Modulus Compatible with substrate (facilitates low surface crack densities)

CRITERIA

YS at Elevated Temps High Fracture Toughness High

Hot Hardness High (appropriate)

Chemical Resistance High

Coefficient of Thermal Exp. Compatible with substrate

Thermal Conductivity Low

Reaction w/ Rotating Band Inert

Phase Transformations None

PROCESS CHARACTERISTIC

Deposition Temperature

CRITERIA

Less than 357C (post autofrettage thermal soak limit)

Deposit Rate 1 mil of coating material per hour

Surface Finish Equal or better than 32 RMS at deposition

Deposition Length 58 Calibers or greater

Hazardous Impacts None or limited

COATING DEPOSITION PROCESS SELECTION

for Large Caliber Guns

	PROCESS								
FUNCTIONAL REQUIREMENTS	Molten Salt	Plasma Spray	Chem. Vapor Dep.	lon Implant.	Ion Plate	Explosive Bonding	Metal liding	Aqueous Electro- Dep	Cyl Magnetror Sputtering
Autofrettage Stresses Protected				\	\			>	✓
No Post-process Surface Finish Req	/			/		/	<	>	/
Acceptable Deposition Rate	✓	/	/			/		>	✓
Proper Process Aspect Ratio			/					\	✓
Accept Dim. and Densities over 50 cal								\	~
Acceptable Adhesion	/					~		✓	✓
Dry Process		✓	/	✓	/	✓	/		✓
Eliminate Hazardous Materials				/	✓	V			\ / /
Eliminate Air / Water Contamination				✓	✓	\ \ / /			\

[•]TECHNICAL PANEL EXPERTS (1997)

TECHNICAL APPROACH

Technology Maturation Methodology

Coupons & 12" Sections

Full-Length Gun Barrels

An Army <u>patent pending</u> manufacturing technology to provide "atomically clean" surfaces for CMS deposition onto full length gun barrels

Lg Cal PCD Substrate Cleaning

w/PCD

CMS Cr Coating Morphology

- SEM images of tensile fractured chromium specimens:
 - a: dense fibrous grain structure (zone T per Thornton)
 - b: small amount of columnar growths
- XRD residual stress study: compressive stress of ~ 30 Ksi

Cr Coating Comparison

Electropladed vs sputtered

800-1000 HK 220 - 400 HK

Cr Coating Composition

SIMS peak intensity vs profile depth

Bulk impurity concentration:

- CMS Cr: all non-Cr elements < 0.1at %
- HC Cr: carbon concentration ~ 10 at %, oxygen concentration ~ 2 at %

Coating Evaluation Process

Adhesion and Erosion Rate

Laser Pulse Heating (LPH) method

Thermal shock resistance

P. Cote et al, Surf. Coat. Technol.163-164, 2003

Coating Evaluation Process Cont.

Adhesion and Erosion Rate

NOVEL SPIN-OFF TECHNOLOGY

Abrams M1A2 Main Battle Tank

Vented Erosion Simulator

(VES): For Interim Coatings Validation

- Flame T & chemistry similar to M829A2/M829A3
- Accepts Lg Cal coated coupons
- Extensively modeled
- Does not exceed critical T observed in current gun barrel erosion process
- Used to screen, evaluate, optimize, and validate Lg Cal gun bore coatings

Benet's VES evaluates coatings in a simulated Lg Cal Gun Firing Environment

INTERIM COATINGS VALIDATION

Vented Erosion Simulator (VES) Testing

Large Caliber
Gun Section

Vented Erosion Simulator (VES)

- Flame T & chemistry similar to M829A2/M829A3
- Accepts Large Caliber coated coupons (eliminates process scaling)
- Ballistically modeled & validated
- Substrate transformed to same depth as Lg Cal Gun
- Maintains critical T observed in current gun barrel erosion process

VENTED EROSION SIMULATOR (VES)

an excellent simulation of Lg Cal gun firing

U.S. Army Benet Laboratories

COATING CRACK DENSITY

Substrate Exposure – Erosion Rate

120mm Tank Gun Surfaces

Summary of TECHNICAL METRICS

Advanced Coatings for Large Caliber Guns

CHARACTERISTIC	Current state of HC CHROME PLATING	Desired end state for SPUTTERING	VERIFICATION TECHNIQUE	CURRENT STATUS
Coating Morphology	Zone 2	Zone 2	Microscopy	yes
Coating Phase	Single	100% Alpha (Ta)	Microscopy	yes
		bcc (Cr)	Microscopy	yes
Hardness	900 -1100 Knoop	200 - 300 Knoop	Microhardness (Ta)	yes
			Microhardness (Cr)	yes
Thermal Shock Resistance	Poor	Excellent	Pulsed Laser	yes
			Vented Erosion Sim	yes
Adhesion / Cohesion	Excellent	Excellent	Groove Testing	yes
			VES (Ta)	yes
			VES (Cr)	yes
Distribution over Length	.002006 in.	Less than .0005	Microscopy	yes (80")
Distribution around ID	.002006 in.	Less than .0005	Microscopy	yes
Deposition Rate	.001 inches/hr	.001 inches/hr	Microscopy	no (.00075)
Coating Thickness	.002006 in.	.004006 in.	Microscopy	yes
Surface Finish	63 finish	32 or better	Visual	yes (16)
Onset of Erosion	100 VES shots	better	Visual / Microscopy	yes
Weapon Service Erosion Life	260 Rnds (M829A3)	400 Rnds (M829A3)	Firing Tests	TBD

UPCOMING FIRING DEMONSTRATIONS

Advanced Sputtered Coatings

LW120 mm Barrel

CMS Liner

120mm XM36 Firing Test #1

- 120mm coated, shrink-fit liner
- July 04

U.S. Army Benet Laboratories

120mm XM36 Firing Test #2

- 120mm coated, shrink-fit liner
- Oct-Nov 04

120mm XM36 Sub-Scale Development & Testing

- Full-length monoblock coating test
- Mid FY05

LARGE CALIBER Pre-PRODUCTION Demonstration Platform

U.S. Army Benet Laborato Ats Watervliet Arsenal - Initial Testing - Sep 04

BENE

SUMMARY

- Cylindrical Magnetron Sputtering is a viable alternative to electrodeposition
- Cylindrical Magnetron Sputtering results encouraging for large caliber systems
 - Increased adhesion and bulk properties
 - All laboratory metrics achieved (still improving deposition rate)
- Current 120mm XM36 tests should be insightful
- Large Caliber Full-length Pre-Production Platform Initial Testing by Sep 2004
- Will one coating technology address all platforms ???
 - Large Cal vs. Med Cal
 - Autofrettaged vs. Non-Autofrettaged
 - Smoothbore vs. Rifled bore